Atmospheric Chemistry and Climate Group
  • Español
  • English

Climate dimension of natural halogens in the Earth system: Past, present, future


ERC Consolidator Grant ERC-2016-COG 726349



Naturally-emitted very short-lived halogens (VSLH) have a profound impact on the chemistry and composition of the atmosphere, destroying greenhouse gases and altering aerosol production, which together can change the Earth´s radiative balance. Therefore, natural halogens possess leverage to influence climate, although their contribution to climate change is not well established and most climate models have yet to consider their effects. Also, there is increasing evidence that natural halogens i) impact on the air quality of coastal cities,  ii) accelerates the atmospheric deposition of mercury (a toxic heavy metal) and iii) that their natural ocean and ice emissions are controlled by biological and photochemical mechanisms that may respond to climate changes. Motivated by the above, this project aims to quantify the so far unrecognized natural halogen-climate feedbacks and the impact of these feedbacks on global atmospheric oxidizing capacity (AOC) and radiative forcing (RF) across pre-industrial, present and future climates. Answering these questions is essential to predict if these climate-mediated feedbacks can reduce or amplify future climate change. To this end we will develop a multidisciplinary research approach using laboratory and field observations and models interactively that will allow us to peel apart the detailed physical processes behind the contribution of natural halogens to global climate change. Furthermore, the work plan also involves examining past-future climate impacts of natural halogens within a holistic Earth System model, where we will develop the multidirectional halogen interactions in the land-ocean-ice-biosphere-atmosphere coupled system. This will provide a breakthrough in our understanding of the importance of these natural processes for the composition and oxidation capacity of the Earth´s atmosphere and climate, both in the presence and absence of human influence.

Publications list:

- Abrahamsson, K., Granfors, A., Ahnoff, M., Cuevas, C. A. and Saiz-Lopez, A.: Organic bromine compounds produced in sea ice in Antarctic winter, Nat. Commun., 9(1), doi:10.1038/s41467-018-07062-8, 2018.

- Corella, J. P., Maffezzoli, N., Cuevas, C. A., Vallelonga, P., Spolaor, A., Cozzi, G., Müller, J., Vinther, B., Barbante, C., Kjær, H. A., Edwards, R. and Saiz-Lopez, A.: Holocene atmospheric iodine evolution over the North Atlantic, Clim. Past, 15(6), 2019–2030, doi:10.5194/cp-15-2019-2019, 2019.

- Cuevas, C. A., Maffezzoli, N., Corella, J. P., Spolaor, A., Vallelonga, P., Kjær, H. A., Simonsen, M., Winstrup, M., Vinther, B., Horvat, C., Fernandez, R. P., Kinnison, D., Lamarque, J. F., Barbante, C. and Saiz-Lopez, A.: Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century, Nat. Commun., 9(1), doi:10.1038/s41467-018-03756-1, 2018.

- Fernandez, R. P., Carmona-Balea, A., Cuevas, C. A., Barrera, J. A., Kinnison, D. E., Lamarque, J.-F., Blaszczak-Boxe, C., Kim, K., Choi, W., Hay, T., Blechschmidt, A.-M., Schönhardt, A., Burrows, J. P. and Saiz-Lopez, A.: Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM-Chem Global Chemistry-Climate Model, J. Adv. Model. Earth Syst., 11(7), 2259–2289, doi:10.1029/2019MS001655, 2019.

- Francés-Monerris, A., Carmona-García, J., Acuña, A. U., Dávalos, J. Z., Cuevas, C. A., Kinnison, D. E., Francisco, J. S., Saiz-Lopez, A. and Roca-Sanjuán, D.: Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury, Angew. Chemie Int. Ed., 59(19), 7605–7610, doi:10.1002/anie.201915656, 2020.

- Iglesias-Suarez, F., Badia, A., Fernandez, R. P., Cuevas, C. A., Kinnison, D. E., Tilmes, S., Lamarque, J.-F., Long, M. C., Hossaini, R. and Saiz-Lopez, A.: Natural halogens buffer tropospheric ozone in a changing climate, Nat. Clim. Chang., doi:10.1038/s41558-019-0675-6, 2020.

- Koenig, T. K., Baidar, S., Campuzano-Jost, P., Cuevas, C. A., Dix, B., Fernandez, R. P., Guo, H., Hall, S. R., Kinnison, D., Nault, B. A., Ullmann, K., Jimenez, J. L., Saiz-Lopez, A. and Volkamer, R.: Quantitative detection of iodine in the stratosphere, Proc. Natl. Acad. Sci. U. S. A., 117(4), doi:10.1073/pnas.1916828117, 2020.

- Maffezzoli, N., Vallelonga, P., Edwards, R., Saiz-Lopez, A., Turetta, C., Kjær, H. A., Barbante, C., Vinther, B. and Spolaor, A.: A 120,000-year record of sea ice in the North Atlantic?, Clim. Past, 15(6), 2031–2051, doi:10.5194/cp-15-2031-2019, 2019.

- Saiz-Lopez, A., Sitkiewicz, S. P., Roca-Sanjuán, D., Oliva-Enrich, J. M., Dávalos, J. Z., Notario, R., Jiskra, M., Xu, Y., Wang, F., Thackray, C. P., Sunderland, E. M., Jacob, D. J., Travnikov, O., Cuevas, C. A., Acuña, A. U., Rivero, D., Plane, J. M. C., Kinnison, D. E. and Sonke, J. E.: Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition, Nat. Commun., 9(1), doi:10.1038/s41467-018-07075-3, 2018.

- Saiz-Lopez, A., Acuña, A. U., Trabelsi, T., Carmona-García, J., Dávalos, J. Z., Rivero, D., Cuevas, C. A., Kinnison, D. E., Sitkiewicz, S. P., Roca-Sanjuán, D. and Francisco, J. S.: Gas-Phase Photolysis of Hg(I) Radical Species: A New Atmospheric Mercury Reduction Process, J. Am. Chem. Soc., 141(22), 8698–8702, doi:10.1021/jacs.9b02890, 2019.

- Veres, P. R., Andrew Neuman, J., Bertram, T. H., Assaf, E., Wolfe, G. M., Williamson, C. J., Weinzierl, B., Tilmes, S., Thompson, C. R., Thames, A. B., Schroder, J. C., Saiz-Lopez, A., Rollins, A. W., Roberts, J. M., Price, D., Peischl, J., Nault, B. A., Møller, K. H., Miller, D. O., Meinardi, S., Li, Q., Lamarque, J. F., Kupc, A., Kjaergaard, H. G., Kinnison, D., Jimenez, J. L., Jernigan, C. M., Hornbrook, R. S., Hills, A., Dollner, M., Day, D. A., Cuevas, C. A., Campuzano-Jost, P., Burkholder, J., Paul Bui, T., Brune, W. H., Brown, S. S., Brock, C. A., Bourgeois, I., Blake, D. R., Apel, E. C. and Ryerson, T. B.: Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci. U. S. A., 117(9), doi:10.1073/pnas.1919344117, 2020.

Copyright © 2016. AC2 CSIC, Institute of Physical Chemistry Rocasolano. Serrano 119 - 28006 Madrid - Spain. Tfno +34 91 561 94 00