Atmospheric Chemistry and Climate Group
  • Español
  • English

Photodissociation of particulate nitrate as a source of daytime tropospheric Cl2

Xiang Peng, Tao Wang, Weihao Wang , A. R. Ravishankara, Christian George, Men Xia, Min Cai, Qinyi Li, Christian Mark Salvador, Chiho Lau, Xiaopu Lyu, Chun Nan Poon, Abdelwahid Mellouki, Yujing Mu, Mattias Hallquist, Alfonso Saiz-Lopez, Hai Guo, Hartmut Herrmann, Chuan Yu, Jianing Dai, Yanan Wang, Xinke Wang, Alfred Yu, Kenneth Leung, Shuncheng Lee and Jianmin Chen.

Nature Communications volume 13, Article number: 939 (2022), https://doi.org/10.1038/s41467-022-28383-9, 2022.

Abstract:

Chlorine atoms (Cl) are highly reactive and can strongly influence the abundances of climate and air quality-relevant trace gases. Despite extensive research on molecular chlorine (Cl2), a Cl precursor, in the polar atmosphere, its sources in other regions are still poorly understood. Here we report the daytime Cl2 concentrations of up to 1 ppbv observed in a coastal area of Hong Kong, revealing a large daytime source of Cl2 (2.7 pptv s−1 at noon). Field and laboratory experiments indicate that photodissociation of particulate nitrate by sunlight under acidic conditions (pH < 3.0) can activate chloride and account for the observed daytime Cl2 production. The high Cl2 concentrations significantly increased atmospheric oxidation. Given the ubiquitous existence of chloride, nitrate, and acidic aerosols, we propose that nitrate photolysis is a significant daytime chlorine source globally. This so far unaccounted for source of chlorine can have substantial impacts on atmospheric chemistry.

 

 

Copyright © 2016. AC2 CSIC, Institute of Physical Chemistry Rocasolano. Serrano 119 - 28006 Madrid - Spain. Tfno +34 91 561 94 00